Supplemental Material

Exploration of the Rapid Effects of Personal Fine Particulate Matter Exposure on Arterial Hemodynamics and Vascular Function during the Same Day among a Sub-set of Individuals Living in the Detroit Area

Robert D. Brook¹, Hwashin H. Shin², Robert L. Bard¹, Richard T. Burnett², Alan Vette³, Carry Croghan³, Jonathan Thornburg⁴, Charles Rodes⁴, Ron Williams³

Table of Contents:

Supplement Table 1: Total Cohort Subject Characteristics

Supplement Table 2:Total Cohort Subject Health Status

Supplemental Figure 1: Personal PM_{2.5} and Systolic Blood Pressure

Supplemental Figure 2: Personal PM_{2.5} and Diastolic Blood Pressure

Supplemental Figure 3: Personal PM_{2.5} and Nitroglycerin-mediated Dilatation

¹ Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA

² Biostatistics and Epidemiology Division, Health Canada, Ottawa, Ontario, Canada

³U.S. Environmental Protection Agency, Research Triangle Park, NC, USA

⁴RTI International, Research Triangle Park, NC, USA

Supplement Table 1: Total Cohort Subject Characteristics (n=51)

FACTOR	n	MEAN	SD	Mini	Q1*	Median	Q3*	Maximum
		or %		mum				
Age (years)	51	43.1	14.7	19	33	44	54	80
Sex	51							
Female	38	75%						
Male	13	25%						
Race	51							
African American	28	55%						
Caucasian	22	43%						
American Indian	1	2%						
Body mass index (Kg/m²)	49	30.8	8.2	16.7	26.3	29.8	34.7	56.5
SBP (mm Hg)	260	124.8	17.6	91	112	124	136	205
DBP (mm Hg)	260	74.1	10.1	50	66	74	82	101
HR (beats/min)	260	75.1	10.9	51	68	75	81	103
Total Cholesterol	44	242.0	171.2					
(mg/dL)								
High density	44	41.7	11.3					
lipoprotein cholesterol								
(mg/dL)								
Triglycerides (mg/dL)	44	153.9	117.7					
Blood glucose	44	112.5	61.9					
(mg/dL)								
BAD (mm)	239	4.1	0.9	2.1	3.5	4.0	4.7	6.5
FMD (%)	228	3.4	5.3	-12.2	0.3	2.9	6.4	19.7
NMD (%)	113	15.2	6.7	0.19	10.3	14.8	19.0	32
Average of 24 hourly	234	38.0	51.1	1.6	12.2	23.7	43.3	475.0
$PM_{2.5} (\mu g/m^3)$								
Daily average of	229	22.5	26.0	1.3	10.0	16.0	26.5	225.4
personal PM _{2.5}								
(µg/m³)								
Daily average of	251	15.2	7.3	2.8	9.6	12.8	19.2	38.9
ambient PM _{2.5}								
(µg/m³) N number of observation								

N, number of observations; SD, Standard deviation; SBP, systolic blood pressure (BP); DBP, diastolic BP; HR, heart rate; BAD, brachial artery diameter; FMD, flow-mediated dilatation; NMD, nitroglycerin-mediated dilatation.

^{*}Q1, 25th percentile; Q3, 75th percentile

Supplement Table 2:Total Cohort Subject Health Status

Self Reported Diagnosis of:	N (%)	Number of Subjects Using Prescribed Medications (%)		
Hypertension	25 (49)	20 (39)		
Hyperlipidemia	16 (31)	7 (14)		
Diabetes Mellitus	11 (22)	7 (14)		
Family History of CAD	19 (37)	. ,		
Self-Reported Heart Disease History:	10 (19)			
Angina	3 (6)			
Myocardial Infarction	3 (6)			
Congestive Heart Failure	4 (8)			
Cardiovascular Medications Used:				
ACEI/ARB	11 (22)			
Diuretic	3 (6)			
Beta Blocker	5 (ÌÓ)			
Calcium Channel Blocker	7 (14)			

ACEI, angiotensin converting enzyme; ARB, angiotensin receptor blocker; CAD, coronary artery disease.

Hourly Effects of PM2.5 on SBP

Supplemental Figure 1 Personal PM_{2.5} and Systolic Blood Pressure (BP)

The associations of hourly TPE levels with systolic BP changes according to the lag period of exposure. For example, hour 0 = period from 0-60 minutes prior to the CV measurement. Points equal the multivariate adjusted HR association (β coefficient per $10 \, \mu\text{g/m}^3$ increase in TPE \pm 95% confidence intervals) for each hourly time point from the linear mixed model (1). Statistically significant time points are bolded in square shape for p<0.01 and in diamond shape for p<0.05. The x-axis is the period of time (hour lag) prior to the measurement of the CV outcome.

Hourly Effects of PM2.5 on DBP

Supplemental Figure 2 Personal PM_{2.5} and Diastolic Blood Pressure (BP)

The associations of hourly TPE levels with diastolic BP changes according to the lag period of exposure. For example, hour 0 = period from 0-60 minutes prior to the CV measurement. Points equal the multivariate adjusted BAD association (β coefficient per $10 \ \mu\text{g/m}^3$ increase in TPE \pm 95% confidence intervals) for each hourly time point from the linear mixed model (1). Statistically significant time points are bolded in square shape for p<0.01 and in diamond shape for p<0.05. The x-axis is the period of time (hour lag) prior to the measurement of the CV outcome.

Hourly Effects of PM2.5 on NMD

Supplemental Figure 3 Personal PM_{2.5} and Nitroglycerin-mediated Dilatation (NMD)

The associations of hourly TPE levels with NMD changes according to the lag period of exposure. For example, hour 0 = period from 0-60 minutes prior to the CV measurement. Points equal the multivariate adjusted FMD association (β coefficient per $10 \, \mu\text{g/m}^3$ increase in TPE \pm 95% confidence intervals) for each hourly time point from the linear mixed model (1). Statistically significant time points are bolded in square shape for p<0.01 and in diamond shape for p<0.05. The x-axis is the period of time (hour lag) prior to the measurement of the CV outcome.